Sains Malaysiana 53(12)(2024): 3845-3857

http://doi.org/10.17576/jsm-2024-5312-01

 

Growth Characteristics and Root Tensile Strength’s Variability in Selected Potential Shrub Species for Slope Bio-engineering Applications

(Ciri Pertumbuhan dan Kepelbagaian Kekuatan Tegangan Akar Spesies Renek Terpilih yang Berpotensi bagi Aplikasi Bio-Kejuruteraan Cerun)

 

MOHAMAD EDRI AZNAN1, ZULFAHMI ALI RAHMAN1,*, SITI NORHAFIZAH TARMIDZI1, WAN MOHD RAZI IDRIS1, TUKIMAT LIHAN1 & AESLINA ABDUL KADIR2


1Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Johor, Malaysia

 

Received: 5 March 2024/Accepted: 4 October 2024

 

Abstract

Malaysia’s tropical climate, alternating wet and dry conditions, and high rainfall contribute to soil erosion issues and landslide risk. Soil bioengineering techniques are among the approaches that can be adopted to tackle these issues and reinforce hillslopes. However, selecting appropriate species for bioengineering applications is crucial. Besides the growth of selected plant species, the root tensile strength also plays an important role in soil structure improvement. This research investigated the growth and root characteristics of four potential shrub species namely Strobilanthes crispa (SC), Tabernaemontana divaricata (TD), Pseuderanthemum carruthersii (PC), and Hibiscus rosa-sinensis(HR) as a plant bioengineering material by determining their root tensile force and stress after six months of growth. The soil medium for plant propagation was prepared using a 3:1:1:1 ratio of soil, sand, organic materials, and chicken manure and used for planting the shrub species for 6 months of monitoring. The results show that SC and HR species exhibit superior growth performance in most variables. Root diameter influences mechanical properties of tensile force and stress which can be best presented by power-law equation. TD species has the strongest root for tensile stress, followed by species HR, PC, and SC. All the selected species have potential as biological material in terms of growth performance and root tensile strength. However, further study is essential to evaluate the survivability and root tensile strength of the selected shrubs when implemented on real slopes. This would offer genuine insights into the specific characteristics of their root systems under practical conditions.

 

Keywords: Bio-engineering; growth; shrubs; tensile strength

 

Abstrak

Malaysia yang beriklim tropika dengan silih berganti antara keadaan basah dan kering dan menerima hujan yang tinggi menyumbang kepada isu hakisan tanah dan risiko tanah runtuh. Teknik biokejuruteraan tanah adalah salah satu pendekatan yang boleh membantu mencegah isu ini dan mengukuhkan cerun bukit. Walau bagaimanapun, pemilihan spesies untuk digunakan sebagai bahan biologi dalam teknik biokejuruteraan adalah tugas yang kritikal. Selain pertumbuhan spesies pokok yang dipilih, kekuatan tegangan akar juga memainkan peranan penting dalam memperbaiki struktur tanah. Penyelidikan ini mengkaji ciri pertumbuhan dan akar empat spesies pokok renek yang berpotensi iaitu Strobilanthes crispa (SC), Tabernaemontana divaricata (TD), Pseuderanthemum carruthersii (PC) dan Hibiscus rosa-sinensis (HR) dalam menentukan daya tegangan dan tegasan akar selepas enam bulan pertumbuhan. Medium tanah disediakan menggunakan nisbah 3:1:1:1 tanah, pasir, bahan organik dan tinja ayam sebelum menanam spesies pokok renek selama 6 bulan pemantauan. Hasil kajian menunjukkan spesies SC dan HR menunjukkan prestasi pertumbuhan yang lebih baik dalam kebanyakan parameter yang dikaji. Diameter akar mempengaruhi sifat mekanikal daya tegangan dan tegasan, yang boleh dibentangkan dengan persamaan kuasa. Spesies TD mempunyai akar yang paling kuat dengan daya tegasan paling tinggi, diikuti oleh spesies HR, PC dan SC. Kesemua spesies yang terpilih mempunyai potensi sebagai bahan biologi dari segi prestasi pertumbuhan dan kekuatan tegangan akar. Namun, kajian lanjut diperlukan untuk menilai daya tahan hidup dan kekuatan tegangan akar spesies terpilih apabila dilaksanakan di cerun sebenar. Ini akan memberikan gambaran yang lebih jelas tentang ciri khusus sistem akar dalam keadaan yang lebih praktikal.

 

Kata kunci: Biokejuruteraan; kekuatan regangan; pokok renek; tumbesaran

 

REFERENCES

Abd Majid, N. 2020. Historical landslide events in Malaysia 1993-2019. Indian Journal of Science and Technology 13: 3387-3399.

Abdi, E. 2018. Root tensile force and resistance of several tree and shrub species of Hyrcanian Forest, Iran. Croatian Journal of Forest Engineering 39: 255-270.

Abdi, E., Azhdari, F., Abdulkhani, A. & Mariv, H.S. 2018. Tensile strength and cellulose content of Persian ironwood (Parrotia persica) roots as bioengineering material. Journal of Forest Science 60(10): 425-430.

Abdullah, M., Osman, N. & Ali, F. 2011. Soil-root shear strength properties of some slope plants. Sains Malaysiana 40(10): 1065-1073.

Ahmad, F., Ushiyama, T. & Sayama, T. 2017. Determination of Z-R Relationship and Inundation Analysis for Kuantan River Basin. Research Publication No. 2/2017. Putrajaya: Malaysian Meteorological Department, Ministry of Science, Technology and Innovation (MOSTI).

Aimee, H. & Normaniza, O. 2014. Physiological responses of melastoma malabathricum at different slope orientations. J. Trop. Plant Physiol. 6: 10-22.

Ali Rahman, Z., Ettbeb, A., Idris, W.M.R. & Ahmad Tarmidzi, S. 2021. Contribution of root tensile of Pennisetum polystachion on shear strength of sandy soil in slope bio-engineering technique. Journal of Environmental Biology 42: 857-864.

Arifin, N. 2005. Penyembuhan Semula Jadi dengan Herba. Kuala Lumpur: PTS Litera Utama.

Aznan, M.E., Rahman, Z.A., Tarmidzi, S.N.A., Idris, W.M.R., Lihan, T., Khamis, S., Kadir, A.A., Jalil, N.A.A. & Rahman, M.R.A. 2023. Preliminary soil characteristics and growth performance of selected shrub plants for bio-engineering technique. IOP Conference Series: Earth and Environmental Science 1167(1): 012042.

Cairns, M.A., Brown, S., Helmer, E.H. & Baumgardner, G.A. 1997. Root biomass allocation in the world’s upland forests. Oecologia 111(1): 1-11.

Chen, Y., Tang, H., He, B., Yan, Z., Liu, X. & Qiang, J. 2022. Root tensile strength of terrace hedgerow plants in the karst trough valleys of SW China: Relation with root morphology and fiber content. International Soil and Water Conservation Research 10(4): 677-686.

Chiaradia, E., Vergani, C. & Bischetti, G.B. 2016. Evaluation of the effects of three european forest types on slope stability by field and probabilistic analyses and their implications for forest management. Forest Ecology and Management 370: 114-129.

Comino, E. & Marengo, P. 2010. Root tensile strength of three shrub species: Rosa canina, Cotoneaster dammeri and Juniperus horizontalis: Soil reinforcement estimation by laboratory tests. CATENA 82(3): 227-235.

Coppin, N.J. & Richards, I.G. 1990. Use of Vegetation in Civil Engineering. Oxford: Butterworths-Heinemann.

Dave’s Garden. 2017. Dave’s garden. El Segundo, California, USA: Internet Brands. http://davesgarden.com

De Baets, S., Poesen, J., Reubens, B., Wemans, K., De Baerdemaeker, J. & Muys, B. 2008. Root tensile strength and root distribution of typical mediterranean plant species and their contribution to soil shear strength. Plant and Soil 305(1): 207-226.

Department of Irrigation and Drainage Malaysia. 2010. Guideline for Erosion and Sediment Control in Malaysia. Putrajaya: Ministry of Energy Transition and Water Transformation.

Dorairaj, D. & Osman, N. 2021. Present practices and emerging opportunities in bioengineering for slope stabilization in Malaysia: An overview. PeerJ 9: e10477.

Duchemin, M. & Hogue, R. 2009. Reduction in agricultural non-point source pollution in the first year following establishment of an integrated grass/tree filter strip system in southern Quebec (Canada). Agriculture, Ecosystems & Environment 131(1-2): 85-97.

Dupuy, L., Fourcaud, T. & Stokes, A. 2005. A numerical investigation into factors affecting the anchorage of roots in tension. European Journal of Soil Science 56(3): 319-327.

Ettbeb, A., Ali Rahman, Z., Razi Idris, W.M., Adam, J., Rahim, S.A., Ahmad Tarmidzi, S.N. & Lihan, T. 2020. Root tensile resistance of selected Pennisetum species and shear strength of root-permeated soil. Applied and Environmental Soil Science 2020: 3484718.

Genet, M., Stokes, A., Salin, F., Mickovski, S.B., Fourcaud, T., Dumail, J-F. & Van Beek, R. 2005. The influence of cellulose content on tensile strength in tree roots. Plant and Soil 278: 1-9.

Ghestem, M., Cao, K., Ma, W., Rowe, N., Leclerc, R., Gadenne, C. & Stokes, A. 2014. A framework for identifying plant species to be used as ‘ecological engineers’ for fixing soil on unstable slopes. PLoS ONE 9(8): e95876.

Ghosh, B., Dogra, P., Bhattacharyya, R., Sharma, N.K. & Dadhwal, K. 2012. Effects of grass vegetation strips on soil conservation and crop yield under rainfed conditions in the Indian Sub-Himalayas. Soil Use and Management 28(4): 635-646.

Ghosh, P., Poddar, S. & Chatterjee, S. 2021. Morphological features, phytochemical and ethnopharmacological attributes of Tabernaemontana divaricata Linn.: A comprehensive review. Journal of Pharmacognosy and Phytochemistry 10: 31-36.

Giupponi, L., Borgonovo, G., Giorgi, A. & Bischetti, G.B. 2019. How to renew soil bioengineering for slope stabilization: Some proposals. Landscape and Ecological Engineering 15: 37-50.

Gray, D.H. & Sotir, R. 1996. Biotechnical and Soil Bioengineering Slope Stabilization: A Practical Guide for Erosion Control. New York: John Wiley & Sons.

Grossnickle, S.C. 2012. Why seedlings survive: Influence of plant attributes. New Forests 43(5): 711-738.

Güney, D., Atar, F., Bayraktar, A., Yildirim, N. & Turna, İ. 2020. Seasonal change of chlorophyll content (spad value) in some tree and shrub species. Turkish Journal of Forest Science 4(2): 245-256.

Hales, T.C., Ford, C.R., Hwang, T., Vose, J.M. & Band, L.E. 2009. Topographic and ecologic controls on root reinforcement. Journal of Geophysical Research: Earth Surface 114: F03013.

Hamzah, N. & Norfarizan-Hanoon, N.A. 2013. Phytochemistry, pharmacology and toxicology properties of Strobilanthes crispus. International Food Research Journal 20(5): 2045-2056.

Kang, S., Hu, X., Goodwin, I. & Jerie, P. 2002. Soil water distribution, water use, and yield response to partial root zone drying under a shallow groundwater table condition in a pear orchard. Scientia Horticulturae 92(3): 277-291.

Koerner, R. 2000. Emerging and future developments of selected geosynthetic applications. Journal of Geotechnical and Geoenvironmental Engineering 126(4): 293.

Lee, J-T., Shih, C-Y. & Hsu, Y-S. 2023. Root biomechanical features and wind erosion resistance of three native leguminous psammophytes for coastal dune restoration. Ecological Engineering 191: 106966.

Lee, K., Chu, Z., Lin, C-P. & Kung. 2020. Root traits and biomechanical properties of three tropical pioneer tree species for forest restoration in landslide areas. Forests 11(2): 179.

Li, Y., He, N., Hou, J., Xu, L., Liu, C., Zhang, J., Wang, Q-F., Zhang, X. & Wu, X. 2018. Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and Evolution https://doi.org/10.3389/fevo.2018.00064

Masi, E.B., Segoni, S. & Tofani, V. 2021. Root reinforcement in slope stability models: A review. Geosciences 11(5): 212.

Meng, S., Zhao, G. & Yang, Y. 2020. Impact of plant root morphology on rooted-soil shear resistance using triaxial testing. Advances in Civil Engineering 2020: 8825828.

Missoum, A. 2018. An update review on Hibiscus rosa sinensis phytochemistry and medicinal uses. Journal of Ayurvedic and Herbal Medicine 4(3): 135-146.

Mulyono, A., Subardja, A., Ekasari, I., Lailati, M., Sudirja, R. & Ningrum, W. 2018. The hydromechanics of vegetation for slope stabilization. IOP Conference Series: Earth and Environmental Science 118(1): 012038.

Ni, J., Leung, A. & Ng, C.W.W. 2019. Influences of plant spacing on root tensile strength of Schefflera arboricola and soil shear strength. Landscape and Ecological Engineering 15: 223-230.

Osman, N., Abdullah, M. & Abdullah, C. 2011. Pull-out and tensile strength properties of two selected tropical trees. Sains Malaysiana 40(6): 577-585.

Pang, C-C., Ma, X.K.K., Lo, J.P.L., Hung, T.T.H. & Hau, B.C.H. 2018. Vegetation succession on landslides in Hong Kong: Plant regeneration, survivorship and constraints to restoration. Global Ecology and Conservation 15: e00428.

Rabert, C., Reyes-Díaz, M., Corcuera, L.J., Bravo, L.A. & Alberdi, M. 2017. Contrasting nitrogen use efficiency of antarctic vascular plants may explain their population expansion in Antarctica. Polar Biology 40(8): 1569-1580.

Rahardjo, H., Satyanaga, A., Leong, E.C., Santoso, V.A. & Ng, Y.S. 2014. Performance of an instrumented slope covered with shrubs and deep-rooted grass. Soils and Foundations 54(3): 417-425.

Razaq, M., Zhang, P., Shen, H.L. & Salahuddin. 2017. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS ONE 12(2): e0171321.

Reubens, B., Poesen, J., Danjon, F., Geudens, G. & Muys, B. 2007. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: A review. Trees 21(4): 385-402.

Saifuddin, M. & Normaniza, O. 2016. Rooting characteristics of some tropical plants for slope protection. Journal of Tropical Forest Science 28(4): 469-478.

Saifuddin, M., Osman, N. & Khandaker, M.M. 2022. Evaluation of root profiles and engineering properties of plants for soil reinforcement. Journal of Tropical Forest Science 34(2): 176-186.

Seitz, J. & Escobedo, F. 2014. Urban forests in Florida: Trees control stormwater runoff and improve water quality. file:///C:/Users/USER/Downloads/trees%20control%20stormwater%20runoff%20and%20improve%20water%20quality.pdf

Selby, M. 1993. Hillslope Materials. Oxford: Oxford University Press. p. 451.

Stokes, A. 2002. Biomechanics of tree root anchorage. In Plant Roots: The Hidden Half, 3rd ed., edited by Waisel, Y., Eshel, A., Beeckman, T. & Kafkafi, U. Boca Raton: CRC Press. pp. 175-186.

Stokes, A., Atger, C., Bengough, A., Fourcaud, T. & Sidle, R. 2009. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant and Soil 324(1-30.

Stokes, A., Norris, J.E., Van Beek, L.P.H., Bogaard, T., Cammeraat, E., Mickovski, S.B., Jenner, A., Di Iorio, A. & Fourcaud, T. 2008. How vegetation reinforces soil on slopes. In Slope Stability and Erosion Control: Ecotechnological Solutions, edited by Norris, J.E., Stokes, A., Mickovski, S.B., Cammeraat, E., Beek, R., Nicoll, B.C. & Achim, A. Dordrecht: Springer Netherlands. pp. 65-118.

Tamin, N.M. & Hashim, R. 2008. An Annotated Field Guide to Tropical Eco-Engineering. Institute of Ocean and Earth Sciences, University of Malaya.

Tepe, Ș., Ellİaltıoğlu, Ș., Yenice, N. & Tıpırdamaz, R. 2002. Obtaining polyploid mint (Mentha longifolia L.) plants with in vitro colchicine treatment. Mediterranean Agricultural Sciences 15(2): 63-69.

Tognetti, R., Giovannelli, A., Lavini, A., Morelli, G., Fragnito, F. & D’andria, R. 2009. Assessing environmental controls over conductances through the soil–plant–atmosphere continuum in an experimental olive tree plantation of Southern Italy. Agricultural and Forest Meteorology 149(8): 1229-1243.

Tosi, M. 2007. Root tensile strength relationships and their slope stability implications of three shrub species in Northern Apennines (Italy). Geomorphology 87: 268-283.

Vergani, C., Chiaradia, E. & Bischetti, G.B. 2012. Variability in the tensile resistance of roots in Alpine forest tree species. Ecological Engineering 46: 43-56.

Vianna, V.F., Fleury, M.P., Menezes, G.B., Coelho, A.T., Bueno, C., Lins Da Silva, J. & Luz, M.P. 2020. Bioengineering techniques adopted for controlling riverbanks’ superficial erosion of the simplício hydroelectric power plant, Brazil. Sustainability 12(19): 7886.

Watson, A.J. & Marden, M. 2004. Live root-wood tensile strengths of some common New Zealand indigenous and plantation tree species. New Zealand Journal of Forestry Science 34(3): 344-353.

Yang, Y., Chen, L., Li, N. & Zhang, Q. 2016. Effect of root moisture content and diameter on root tensile properties. PLoS ONE 11(3): e0151791.

Ye, C., Guo, Z., Li, Z. & Cai, C. 2017. The effect of bahiagrass roots on soil erosion resistance of aquults in subtropical China. Geomorphology 285: 82-93.

Zhang, C., Ma, X., Liu, Y. & Jiang, J. 2021. Influence of various gauge lengths, root spacing and root numbers on root tensile properties of herbaceous plants. Sains Malaysiana 50(9): 2499-2510.

Zhang, C-B., Chen, L-H. & Jiang, J. 2014. Why fine tree roots are stronger than thicker roots: The role of cellulose and lignin in relation to slope stability. Geomorphology 206: 196-202.

Zhao, B., Zhang, L., Xia, Z., Xu, W., Xia, L., Liang, Y. & Xia, D. 2019. Effects of rainfall intensity and vegetation cover on erosion characteristics of a soil containing rock fragments slope. Advances in Civil Engineering 2019: 7043428.

 

*Corresponding author; email: zarah1970@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  next